Löslichkeit bei verschiedenen Temperaturen

Innerhalb dieses Versuches soll die Löslichkeit in Abhängigkeit von der Temperatur beobachtet werden. Es werden hier lediglich Alltagschemikalien eingesetzt, die den Schülerinnen und Schülern aus ihrer Alltagswelt bekannt sind.

Gefahrenstoffe		
Kaffeepulver	Н: -	P: -
Tee	Н: -	P: -
Puderzucker	Н: -	P: -
Reis	Н: -	P: -
Wasser	Н: -	P: -
		!> 3> 4>

Materialien:

8 Bechergläser (100 mL), großer Spatel, Wasserkocher, Glasstab

Chemikalien:

Kaffeepulver, Tee (am besten loser Tee), Puderzucker, Reis, kaltes Wasser, heißes Wasser

Durchführung:

Teil A:

Es werden jeweils 75 mL kaltes Wasser in die vier Bechergläser gefüllt. In jedes Becherglas werden 2 Spatellöffel des jeweiligen Stoffes gegeben. Nachdem mit einem Glasstab vorsichtig einige Male umgerührt wurde, werden die Bechergläser für 1 Minuten beobachtet.

Teil B:

Wasser wird mit einem Wasserkocher erhitzt und jeweils 75 mL in jedes der vier Bechergläser gefüllt. Die weiteren Schritte entsprechen denen in Teil A. [1]

Beobachtung:

Teil A:

Becherglas	Stoff	kaltes Wasser
1	Kaffee	Nicht vollständig löslich (das Wasser färbt sich braun, viel Bodensatz)
2	Tee	Nicht vollständig löslich (Wasser färbt sich rosa, Teekrümel am Boden des Glases und an der Wasseroberfläche)
3	Puderzucker	Nicht vollständig löslich (Wasser wird trüb, Bodensatz)
4	Reis	Nicht löslich (Wasser bleibt klar, Reis setzt sich am Boden ab)

Abb. 7 – Kaffee und Tee in kaltem Wasser.

Abb. 8 – Puderzucker und Reis in kaltem Wasser.

Teil B:

Becherglas	Stoff	Heißes Wasser
1	Kaffee	Löslich (dunkelbraune Färbung der Lösung)
2	Tee	Nicht vollständig löslich (Wasser färbt sich dunkelrot, wenig Rückstände am Boden und an der Wasseroberfläche)
3	Puderzucker	Vollständig Löslich (Wasser bleibt klar, keinerlei Rückstände

Becherglas	Stoff	Heißes Wasser
4	Reis	Nicht löslich (Wasser bleibt klar, Reis setzt sich am Boden ab und quillt leicht auf)

Fachwissenschaftliche Deutung:

Die Löslichkeit von Stoffen ist u.a. abhängig von der Temperatur des Lösungsmittels. Diese Temperaturabhängigkeit lässt sich durch die energetischen Verhältnisse beim Lösen erklären. Stoffe, die sich exotherm lösen, lösen sich besser bei niedrigen Temperaturen. Endotherm lösende Stoffe lösen sich besser bei hohen, als bei niedrigen Temperaturen. Unabhängig davon nimmt bei hohen Temperaturen die Teilchenbewegung der Wassermoleküle zu, wodurch der Lösevorgang beschleunigt werden kann.

Didaktisch reduzierte Deutung:

Die Löslichkeit der verschiedenen Stoffe ist abhängig von der Temperatur des Wassers. Einige Stoffe, wie Kaffee, Tee und Puderzucker, lösen sich in heißem Wasser besser als in kaltem. Es gibt auch Stoffe (Reis), die sich weder in kaltem noch in heißem Wasser lösen.

Entsorgung:

Die Lösungen können im Abguss entsorgt werden.

Literatur:

[1] van Saan, Anita: 365 Experimente für jeden Tag. 4. Auflage. Kemper am Niederrhein 2009, S. 21.

[2] Schubert, Prof. Dr. Volker et. al.,

http://www.chemgapedia.de/vsengine/tra/vsc/de/ch/11/aac/vorlesung/kap_7/trajek torie/fluessigkeiten.tra/Vlu/vsc/de/ch/11/aac/vorlesung/kap_7/vlu/salzloesungen.vlu/Page/vsc/de/ch/11/aac/vorlesung/kap_7/kap7_5/kap7_52/kap7_52c.vscml.html (zuletzt angerufen am 22.07.2017, um 17:10 Uhr).

Unterrichtsanschlüsse:

Dieses Experiment kann als Erarbeitungsexperiment genutzt werden, um die Temperaturabhängigkeit der Löslichkeit einzuführen. Die Schülerinnen und Schüler sollten vor Durchführung des Versuches bereits Vorwissen zum Begriff der Löslichkeit besitzen.

Alternativ zur Verwendung von Reis kann ein anderer Alltagsstoff eingesetzt werden, der sich nicht löst und somit als Blindprobe dient. Durch die Auswahl eines anderen Stoffes würde man die Problematik des Aufquellens des Reises umgehen, die eventuell eine Fehlvorstellung hervorrufen könnte.